• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Data Analysis and Graphics Using R: An Example-Based Approach

Data Analysis and Graphics Using R: An Example-Based Approach

9780521762939
548.04 zł
493.23 zł Save 54.81 zł Tax included
Lowest price within 30 days before promotion: 493.23 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.
Product Details
79934
9780521762939
9780521762939

Data sheet

Publication date
2010
Issue number
3
Cover
hard cover
Pages count
549
Dimensions (mm)
183.00 x 260.00
Weight (g)
1300
  • Preface; Content - how the chapters fit together; 1. A brief introduction to R; 2. Styles of data analysis; 3. Statistical models; 4. A review of inference concepts; 5. Regression with a single predictor; 6. Multiple linear regression; 7. Exploiting the linear model framework; 8. Generalized linear models and survival analysis; 9. Time series models; 10. Multi-level models, and repeated measures; 11. Tree-based classification and regression; 12. Multivariate data exploration and discrimination; 13. Regression on principal component or discriminant scores; 14. The R system - additional topics; 15. Graphs in R; Epilogue; Index of R symbols and functions; Index of authors.
Comments (0)