• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Data Analysis and Graphics Using R: An Example-Based Approach

Data Analysis and Graphics Using R: An Example-Based Approach

9780521762939
548,04 zł
493,23 zł Zniżka 54,81 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 493,23 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.
Szczegóły produktu
79934
9780521762939
9780521762939

Opis

Rok wydania
2010
Numer wydania
3
Oprawa
twarda
Liczba stron
549
Wymiary (mm)
183.00 x 260.00
Waga (g)
1300
  • Preface; Content - how the chapters fit together; 1. A brief introduction to R; 2. Styles of data analysis; 3. Statistical models; 4. A review of inference concepts; 5. Regression with a single predictor; 6. Multiple linear regression; 7. Exploiting the linear model framework; 8. Generalized linear models and survival analysis; 9. Time series models; 10. Multi-level models, and repeated measures; 11. Tree-based classification and regression; 12. Multivariate data exploration and discrimination; 13. Regression on principal component or discriminant scores; 14. The R system - additional topics; 15. Graphs in R; Epilogue; Index of R symbols and functions; Index of authors.
Komentarze (0)