• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Statistical Principles for the Design of Experiments: Applications to Real Experiments

Statistical Principles for the Design of Experiments: Applications to Real Experiments

9780521862141
560.64 zł
504.57 zł Save 56.07 zł Tax included
Lowest price within 30 days before promotion: 504.57 zł
Quantity
Product unavailable
Out of print

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
This book is about the statistical principles behind the design of effective experiments and focuses on the practical needs of applied statisticians and experimenters engaged in design, implementation and analysis. Emphasising the logical principles of statistical design, rather than mathematical calculation, the authors demonstrate how all available information can be used to extract the clearest answers to many questions. The principles are illustrated with a wide range of examples drawn from real experiments in medicine, industry, agriculture and many experimental disciplines. Numerous exercises are given to help the reader practise techniques and to appreciate the difference that good design can make to an experimental research project. Based on Roger Meads excellent Design of Experiments, this new edition is thoroughly revised and updated to include modern methods relevant to applications in industry, engineering and modern biology. It also contains seven new chapters on contemporary topics, including restricted randomisation and fractional replication.
Product Details
64218
9780521862141
9780521862141

Data sheet

Publication date
2012
Issue number
1
Cover
hard cover
Pages count
586
Dimensions (mm)
185.00 x 267.00
Weight (g)
1330
  • 1. Introduction; 2. Elementary ideas of blocking: the randomised complete block design; 3. Elementary ideas of treatment structure; 4. General principles of linear models for the analysis of experimental data; 5. Experimental units; 6. Replication; 7. Blocking and control; 8. Multiple blocking systems and crossover designs; 9. Multiple levels of information; 10. Randomisation; 11. Restricted randomisation; 12. Experimental objectives, treatments and treatment structures; 13. Factorial structure and particular forms of effects; 14. Fractional replication; 15. Incomplete block size for factorial experiments; 16. Quantitative factors and response functions; 17. Multifactorial designs for quantitative factors; 18. Split unit designs; 19. Multiple experiments and new variation; 20. Sequential aspects of experiments and experimental programmes; 21. Designing useful experiments.
Comments (0)