• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Statistical Principles for the Design of Experiments: Applications to Real Experiments

Statistical Principles for the Design of Experiments: Applications to Real Experiments

9780521862141
560,64 zł
504,57 zł Zniżka 56,07 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 504,57 zł
Ilość
Produkt niedostępny
Nakład wyczerpany (niedostępny u wydawcy)

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
This book is about the statistical principles behind the design of effective experiments and focuses on the practical needs of applied statisticians and experimenters engaged in design, implementation and analysis. Emphasising the logical principles of statistical design, rather than mathematical calculation, the authors demonstrate how all available information can be used to extract the clearest answers to many questions. The principles are illustrated with a wide range of examples drawn from real experiments in medicine, industry, agriculture and many experimental disciplines. Numerous exercises are given to help the reader practise techniques and to appreciate the difference that good design can make to an experimental research project. Based on Roger Meads excellent Design of Experiments, this new edition is thoroughly revised and updated to include modern methods relevant to applications in industry, engineering and modern biology. It also contains seven new chapters on contemporary topics, including restricted randomisation and fractional replication.
Szczegóły produktu
64218
9780521862141
9780521862141

Opis

Rok wydania
2012
Numer wydania
1
Oprawa
twarda
Liczba stron
586
Wymiary (mm)
185.00 x 267.00
Waga (g)
1330
  • 1. Introduction; 2. Elementary ideas of blocking: the randomised complete block design; 3. Elementary ideas of treatment structure; 4. General principles of linear models for the analysis of experimental data; 5. Experimental units; 6. Replication; 7. Blocking and control; 8. Multiple blocking systems and crossover designs; 9. Multiple levels of information; 10. Randomisation; 11. Restricted randomisation; 12. Experimental objectives, treatments and treatment structures; 13. Factorial structure and particular forms of effects; 14. Fractional replication; 15. Incomplete block size for factorial experiments; 16. Quantitative factors and response functions; 17. Multifactorial designs for quantitative factors; 18. Split unit designs; 19. Multiple experiments and new variation; 20. Sequential aspects of experiments and experimental programmes; 21. Designing useful experiments.
Komentarze (0)