• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
How to Build a Brain

How to Build a Brain

A Neural Architecture for Biological Cognition

9780199794546
1,070.55 zł
963.49 zł Save 107.06 zł Tax included
Lowest price within 30 days before promotion: 963.49 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
In this book, Chris Eliasmith presents a new approach to understanding the neural implementation of cognition in a way that is centrally driven by biological considerations. He calls the general architecture that results from the application of this approach the Semantic Pointer Architecture (SPA), based on the Semantic Pointer Hypothesis. According to this hypothesis, higher-level cognitive functions in biological systems are made possible by semantic pointers. These pointers areneural representations that carry partial semantic content and can be built up into the complex representational structures necessary to support cognition. The SPA architecture demonstrates how neural systems generate, compose, and control the flow of semantics pointers. Eliasmith describes in detailthe theory and empirical evidence supporting the SPA, and presents several examples of its application to cognitive modeling, covering the generation of semantic pointers from visual data, the application of semantic pointers for motor control, and most important, the use of semantic pointers for representation of language-like structures, cognitive control, syntactic generalization, learning of new cognitive strategies, and language-based reasoning. He agues that the SPA provides analternative to the dominant paradigms in cognitive science, including symbolicism, connectionism, and dynamicism.
Product Details
OUP USA
85537
9780199794546
9780199794546

Data sheet

Publication date
2013
Issue number
1
Cover
hard cover
Pages count
480
Dimensions (mm)
178 x 254
Weight (g)
1165
  • Contents; 1 The science of cognition; 1.1 The last 50 years; 1.2 How we got here; 1.3 Where we are; 1.4 Questions and answers; 1.5 Nengo: An introduction; Part I: How to build a brain; 2 An introduction to brain building; 2.1 Brain parts; 2.2 A framework for building a brain; 2.2.1 Representation; 2.2.2 Transformation; 2.2.3 Dynamics; 2.2.4 The three principles; 2.3 Levels; 2.4 Nengo: Neural representation; 3 Biological cognition - Semantics; 3.1 The semantic pointer hypothesis; 3.2 What is a semantic pointer?; 3.3 Semantics: An overview; 3.4 Shallow semantics; 3.5 Deep semantics for perception; 3.6 Deep semantics for action; 3.7 The semantics of perception and action; 3.8 Nengo: Neural computations; 4 Biological cognition - Syntax; 4.1 Structured representations; 4.2 Binding without neurons; 4.3 Binding with neurons.; 4.4 Manipulating structured representations; 4.5 Learning structural manipulations; 4.6 Clean-up memory and scaling; 4.7 Example: Fluid intelligence; 4.8 Deep semantics for cognition; 4.9 Nengo: Structured representations in neurons; 5 Biological cognition - Control; 5.1 The flow of information; 5.2 The basal ganglia; 5.3 Basal ganglia, cortex, and thalamus; 5.4 Example: Fixed sequences of actions; 5.5 Attention and the routing of information; 5.6 Example: Flexible sequences of actions; 5.7 Timing and control; 5.8 Example: The Tower of Hanoi; 5.9 Nengo: Question answering; 6 Biological cognition - Memory and learning; 6.1 Extending cognition through time; 6.2 Working memory; 6.3 Example: Serial list memory; 6.4 Biological learning; 6.5 Example: Learning new actions; 6.6 Example: Learning new syntactic manipulations; 6.7 Nengo: Learning; 7 The Semantic Pointer Architecture (SPA); 7.1 A summary of the SPA; 7.2 A SPA unified network; 7.3 Tasks; 7.3.1 Recognition; 7.3.2 Copy drawing; 7.3.3 Reinforcement learning; 7.3.4 Serial working memory; 7.3.5 Counting; 7.3.6 Question answering; 7.3.7 Rapid variable creation; 7.3.8 Fluid reasoning; 7.3.9 Discussion; 7.4 A unified view: Symbols and probabilities; 7.5 Nengo: Advanced modeling methods; Part II Is that how you build a brain?; 8 Evaluating cognitive theories 341; 8.1 Introduction; 8.2 Core cognitive criteria (CCC); 8.2.1 Representational structure; 8.2.1.1 Systematicity; 8.2.1.2 Compositionality; 8.2.1.3 Productivity; 8.2.1.4 The massive binding problem; 8.2.2 Performance concerns; 8.2.2.1 Syntactic generalization; 8.2.2.2 Robustness; 8.2.2.3 Adaptability; 8.2.2.4 Memory; 8.2.2.5 Scalability; 8.2.3 Scientific merit; 8.2.3.1 Triangulation (contact with more sources of data); 8.2.3.2 Compactness; 8.3 Conclusion; 8.4 Nengo Bonus: How to build a brain - a practical guide; 9 Theories of cognition; 9.1 The state of the art; 9.1.1 ACT-R; 9.1.2 Synchrony-based approaches; 9.1.3 Neural blackboard architecture (NBA); 9.1.4 The integrated connectionist/symbolic architecture (ICS); 9.1.5 Leabra; 9.1.6 Dynamic field theory (DFT); 9.2 An evaluation; 9.2.1 Representational structure; 9.2.2 Performance concerns; 9.2.3 Scientific merit; 9.2.4 Summary; 9.3 The same...; 9.4 ...but different; 9.5 The SPA versus the SOA; 10 Consequences and challenges; 10.1 Representation; 10.2 Concepts; 10.3 Inference; 10.4 Dynamics; 10.5 Challenges; 10.6 Conclusion; A Mathematical notation and overview; A.1 Vectors; A.2 Vector spaces; A.3 The dot product; A.4 Basis of a vector space; A.5 Linear transformations on vectors; A.6 Time derivatives for dynamics; B Mathematical derivations for the NEF; B.1 Representation; B.1.1 Encoding; B.1.2 Decoding; B.2 Transformation; B.3 Dynamics; C Further details on deep semantic models; C.1 The perceptual model; C.2 The motor model; D Mathematical derivations for the SPA; D.1 Binding and unbinding HRRs; D.2 Learning high-level transformations; D.3 Ordinal serial encoding model; D.4 Spike-timing dependent plasticity; D.5 Number of neurons for representing structure; E SPA model details; E.1 Tower of Hanoi; Bibliography; Index;
Comments (0)