• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Semiparametric Regression

Semiparametric Regression

9780521785167
302.34 zł
272.10 zł Save 30.24 zł Tax included
Lowest price within 30 days before promotion: 272.10 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.
Product Details
99031
9780521785167
9780521785167

Data sheet

Publication date
2003
Issue number
1
Cover
paperback
Pages count
404
Dimensions (mm)
178.00 x 253.00
Weight (g)
700
  • 1. Introduction; 2. Parametric regression; 3. Scatterplot smoothing; 4. Mixed models; 5. Automatic scatterplot smoothing; 6. Inference; 7. Simple semiparametric models; 8. Additive models; 9. Semiparametric mixed models; 10. Generalized parametric regression; 11. Generalized additive models; 12. Interaction models; 13. Bivariate smoothing; 14. Variance function estimation; 15. Measurement error; 16. Bayesian semiparametric regression; 17. Spatially adaptive smoothing; 18. Analyses; 19. Epilogue; A. Technical complements; B. Computational issues.
Comments (0)