• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Applied Mixed Model Analysis: A Practical Guide

Applied Mixed Model Analysis: A Practical Guide

9781108480574
667.80 zł
601.02 zł Save 66.78 zł Tax included
Lowest price within 30 days before promotion: 601.02 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
This practical book is designed for applied researchers who want to use mixed models with their data. It discusses the basic principles of mixed model analysis, including two-level and three-level structures, and covers continuous outcome variables, dichotomous outcome variables, and categorical and survival outcome variables. Emphasizing interpretation of results, the book develops the most important applications of mixed models, such as the study of group differences, longitudinal data analysis, multivariate mixed model analysis, IPD meta-analysis, and mixed model predictions. All examples are analyzed with STATA, and an extensive overview and comparison of alternative software packages is provided. All datasets used in the book are available for download, so readers can re-analyze the examples to gain a strong understanding of the methods. Although most examples are taken from epidemiological and clinical studies, this book is also highly recommended for researchers working in other fields.
Product Details
66875
9781108480574
9781108480574

Data sheet

Publication date
2019
Issue number
2
Cover
hard cover
Pages count
246
Dimensions (mm)
178.00 x 253.00
Weight (g)
600
  • 1. Introduction; 2. Basic principles of mixed model analysis; 3. What is gained by using mixed model analysis?; 4. Logistic mixed model analysis; 5. Mixed model analysis with other outcomes; 6. Explaining differences between groups; 7. Multivariable modelling; 8. Predictions based on mixed model analysis; 9. Mixed model analysis for longitudinal data; 10. Multivariate mixed model analysis; 11. Sample size calculations; 12. Some loose ends.
Comments (0)