• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Statistical Learning for Biomedical Data

Statistical Learning for Biomedical Data

9780521699099
233.04 zł
209.73 zł Save 23.31 zł Tax included
Lowest price within 30 days before promotion: 209.73 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random ForestsŸ, neural nets, support vector machines, nearest neighbors and boosting.
Product Details
66430
9780521699099
9780521699099

Data sheet

Publication date
2011
Issue number
1
Cover
paperback
Pages count
298
Dimensions (mm)
175.00 x 245.00
Weight (g)
600
  • Preface; Acknowledgements; Part I. Introduction:: 1. Prologue; 2. The landscape of learning machines; 3. A mangle of machines; 4. Three examples and several machines; Part II. A Machine Toolkit:: 5. Logistic regression; 6. A single decision tree; 7. Random forests - trees everywhere; Part III. Analysis Fundamentals:: 8. Merely two variables; 9. More than two variables; 10. Resampling methods; 11. Error analysis and model validation; Part IV. Machine Strategies:: 12. Ensemble methods - lets take a vote; 13. Summary and conclusions; References; Index.
Comments (0)