• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
An Introduction to Modeling of Transport Processes: Applications to Biomedical Systems

An Introduction to Modeling of Transport Processes: Applications to Biomedical Systems

9780521119245
623.64 zł
561.27 zł Save 62.37 zł Tax included
Lowest price within 30 days before promotion: 561.27 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
Organised around problem solving, this book gently introduces the reader to computational simulation of biomedical transport processes, bridging fundamental theory with real-world applications. Using this book the reader will gain a complete foundation to the subject, starting with problem simplification, implementing it in software, through to interpreting the results, validation, and optimisation. Ten case studies, focusing on emerging areas such as thermal therapy and drug delivery, with easy to follow step-by-step instructions, provide ready-to-use templates for further applications. Solution process using the commonly used tool COMSOL Multiphysics is described in detail; useful biomedical property data and correlations are included; and background theory information is given at the end of the book for easy reference. A mixture of short and extended exercises make this book a complete course package for undergraduate and beginning graduate students in biomedical and biochemical engineering curricula, as well as a self-study guide.
Product Details
98828
9780521119245
9780521119245

Data sheet

Publication date
2009
Issue number
1
Cover
hard cover
Pages count
532
Dimensions (mm)
203.00 x 254.00
Weight (g)
1280
  • Part I. Essential Steps:: 1. Problem formulation; 2. Software implementation:: what to solve; 3. Software implementation:: how to solve (preprocessing); 4. Software implementation:: visualizing and manipulating solution (postprocessing); 5. Validation, sensitivity analysis, optimization and debugging; Part II. Case Studies:: 6. Case studies; Part III. Background Material:: 7. Governing equations and boundary conditions; 8. Source terms; 9. Material properties and other input parameters; 10. Solving the equations:: numerical methods.
Comments (0)