• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
An Introduction to Sparse Stochastic Processes

An Introduction to Sparse Stochastic Processes

9781107058545
245.64 zł
221.07 zł Save 24.57 zł Tax included
Lowest price within 30 days before promotion: 221.07 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.
Product Details
66621
9781107058545
9781107058545

Data sheet

Publication date
2014
Issue number
1
Cover
hard cover
Pages count
384
Dimensions (mm)
179.00 x 253.00
Weight (g)
920
  • 1. Introduction; 2. Roadmap to the book; 3. Mathematical context and background; 4. Continuous-domain innovation models; 5. Operators and their inverses; 6. Splines and wavelets; 7. Sparse stochastic processes; 8. Sparse representations; 9. Infinite divisibility and transform-domain statistics; 10. Recovery of sparse signals; 11. Wavelet-domain methods; 12. Conclusion; Appendix A. Singular integrals; Appendix B. Positive definiteness; Appendix C. Special functions.
Comments (0)