• Order to parcel locker

    Order to parcel locker
  • easy pay

    easy pay
  • Reduced price
Integrating Omics Data

Integrating Omics Data

9781107069114
623.64 zł
561.27 zł Save 62.37 zł Tax included
Lowest price within 30 days before promotion: 561.27 zł
Quantity
Available in 4-6 weeks

  Delivery policy

Choose Paczkomat Inpost, Orlen Paczka, DPD or Poczta Polska. Click for more details

  Security policy

Pay with a quick bank transfer, payment card or cash on delivery. Click for more details

  Return policy

If you are a consumer, you can return the goods within 14 days. Click for more details

Description
In most modern biomedical research projects, application of high-throughput genomic, proteomic, and transcriptomic experiments has gradually become an inevitable component. Popular technologies include microarray, next generation sequencing, mass spectrometry and proteomics assays. As the technologies have become mature and the price affordable, omics data are rapidly generated, and the problem of information integration and modeling of multi-lab and/or multi-omics data is becoming a growing one in the bioinformatics field. This book provides comprehensive coverage of these topics and will have a long-lasting impact on this evolving subject. Each chapter, written by a leader in the field, introduces state-of-the-art methods to handle information integration, experimental data, and database problems of omics data.
Product Details
72120
9781107069114
9781107069114

Data sheet

Publication date
2015
Issue number
1
Cover
hard cover
Pages count
476
Dimensions (mm)
156.00 x 235.00
Weight (g)
820
  • 1. Meta-analysis of genome-wide association studies:: a practical guide Wei Chen, Dajiang Liu and Lars Fritsche; 2. Integrating omics data:: statistical and computational methods Sunghwan Kim, Zhiguang Huo, Yongseok Park and George C. Tseng; 3. Integrative analysis of many biological networks to study gene regulation Wenyuan Li, Chao Dai and Xianghong Jasmine Zhou; 4. Network integration of genetically regulated gene expression to study complex diseases Zhidong Tu, Bin Zhang and Jun Zhu; 5. Integrative analysis of multiple ChIP-X data sets using correlation motifs Hongkai Ji and Yingying Wei; 6. Identify multi-dimensional modules from diverse cancer genomics data Shihua Zhang, Wenyuan Li and Xianghong Jasmine Zhou; 7. A latent variable approach for integrative clustering of multiple genomic data types Ronglai Shen; 8. Penalized integrative analysis of high-dimensional omics data Jin Liu, Xingjie Shi, Jian Huang and Shuangge Ma; 9. A Bayesian graphical model for integrative analysis of TCGA data:: BayesGraph for TCGA integration Yanxun Xu, Yitan Zhu and Yuan Ji; 10. Bayesian models for integrative analysis of multi-platform genomics data Veera Baladandayuthapani; 11. Exploratory methods to integrate multi-source data Eric F. Lock and Andrew B. Nobel; 12. eQTL and Directed Graphical Model Wei Sun and Min Jin Ha; 13. microRNAs:: target prediction and involvement in gene regulatory networks Panayiotis V. Benos; 14. Integration of cancer omics data on a whole-cell pathway model for patient-specific interpretation Charles Vaske, Sam Ng, Evan Paull and Joshua Stuart; 15. Analyzing combinations of somatic mutations in cancer genomes Mark D. M. Leiserson and Benjamin J. Raphael; 16. A mass action-based model for gene expression regulation in dynamic systems Guoshou Teo, Christine Vogel, Debashis Ghosh, Sinae Kim and Hyungwon Choi; 17. From transcription factor binding and histone modification to gene expression:: integrative quantitative models Chao Cheng; 18. Data integration on non-coding RNA studies Zhou Du, Teng Fei, Myles Brown, X. Shirley Liu and Yiwen Chen; 19. Drug-pathway association analysis:: integration of high-dimensional transcriptional and drug sensitivity profile Cong Li, Can Yang, Greg Hather, Ray Liu and Hongyu Zhao.
Comments (0)