• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Medical Decision Making

Medical Decision Making

9781119627807
283,44 zł
255,10 zł Zniżka 28,34 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 255,10 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis

MEDICAL DECISION MAKING

Detailed resource showing how to best make medical decisions while incorporating clinical practice guidelines and decision support systems

Sir William Osler, a legendary physician of an earlier era, once said, Medicine is a science of uncertainty and an art of probability. In Osler’s day, and now, decisions about treatment often cannot wait until the diagnosis is certain. Medical Decision Making is about how to make the best possible decision given that uncertainty. The book shows how to tailor decisions under uncertainty to achieve the best outcome based on published evidence, features of a patient’s illness, and the patient’s preferences.

Medical Decision Making describes a powerful framework for helping clinicians and their patients reach decisions that lead to outcomes that the patient prefers. That framework contains the key principles of patient-centered decision-making in clinical practice.

Since the first edition of Medical Decision Making in 1988, the authors have focused on explaining key concepts and illustrating them with clinical examples. For the Third Edition, every chapter has been revised and updated.

Written by four distinguished and highly qualified authors, Medical Decision Making includes information on::

  • How to consider the possible causes of a patient’s illness and decide on the probability of the most important diagnoses.
  • How to measure the accuracy of a diagnostic test.
  • How to help patients express their concerns about the risks that they face and how an illness may affect their lives.
  • How to describe uncertainty about how an illness may change over time.
  • How to construct and analyze decision trees.
  • How to identify the threshold for doing a test or starting treatment
  • How to apply these concepts to the design of practice guidelines and medical policy making.

Medical Decision Making is a valuable resource for clinicians, medical trainees, and students of decision analysis who wish to fully understand and apply the principles of decision making to clinical practice.

Szczegóły produktu
Wiley-Blackwell
101462
9781119627807

Opis

Rok wydania
2024
Numer wydania
3
Oprawa
miękka foliowana
Liczba stron
368
Wymiary (mm)
213.00 x 274.00
  • Foreword xi

    Preface xiii

    1 Introduction 1

    1.1 How may I be thorough yet efficient when considering the possible causes of my patient’s problems? 1

    1.2 How do I characterize the information I have gathered during the medical interview and physical examination? 1

    1.3 How do I interpret new diagnostic information? 3

    1.4 How do I select the appropriate diagnostic test? 4

    1.5 How do I choose among several risky treatment alternatives? 4

    2 Differential diagnosis 5

    2.1 An introduction 5

    2.2 How clinicians make a diagnosis 5

    2.3 The principles of hypothesis- driven differential diagnosis 8

    2.4 An extended example 14

    Bibliography 16

    3 Probability: quantifying uncertainty 18

    3.1 Uncertainty and probability in medicine 18

    3.2 How to determine a probability 21

    3.3 Sources of error in using personal experience to estimate the probability 23

    3.4 The role of empirical evidence in quantifying uncertainty 30

    3.5 Limitations of published studies of disease prevalence 35

    3.6 Taking the special characteristics of the patient into account when determining probabilities 36

    Bibliography 37

    4 Interpreting new information: Bayes’ theorem 38

    4.1 Introduction 38

    4.2 Conditional probability defined 40

    4.3 Bayes’ theorem 41

    4.4 The odds ratio form of Bayes’ theorem 45

    4.5 Lessons to be learned from using Bayes’ theorem 50

    4.6 The assumptions of Bayes’ theorem 52

    4.7 Using Bayes’ theorem to interpret a sequence of tests 54

    4.8 Using Bayes’ theorem when many diseases are under consideration 55

    Bibliography 57

    5 Measuring the accuracy of clinical findings 58

    5.1 A language for describing test results 58

    5.2 The measurement of diagnostic test performance 62

    5.3 How to measure diagnostic test performance: a hypothetical example 67

    5.4 Pitfalls of predictive value 69

    5.5 How to perform a high quality study of diagnostic test performance 70

    5.6 Spectrum bias in the measurement of test performance 74

    5.7 When to be concerned about inaccurate measures of test performance 79

    5.8 Test results as a continuous variable: the ROC curve 81

    5.9 Combining data from studies of test performance: the systematic review and meta- analysis 87

    A.5.1 Appendix: derivation of the method for using an ROC curve to choose the definition of an abnormal test result 89

    Bibliography 91

    6 Decision trees – representing the structure of a decision problem 93

    6.1 Introduction 93

    6.2 Key concepts and terminology 93

    6.3 Constructing the decision tree for a hypothetical decision problem 96

    6.4 Constructing the decision tree for a medical decision problem 103

    Epilogue 112

    Bibliography 112

    7 Decision tree analysis 113

    7.1 Introduction 113

    7.2 Folding- back operation 114

    7.3 Sensitivity analysis 126

    Epilogue 133

    Bibliography 133

    8 Outcome utility – representing risk attitudes 134

    8.1 Introduction 134

    8.2 What are risk attitudes? 135

    8.3 Demonstration of risk attitudes in a medical context 136

    8.4 General observations about outcome utilities 147

    8.5 Determining outcome utilities – underlying concepts 151

    Epilogue 157

    Bibliography 158

    9 Outcome utilities – clinical applications 159

    9.1 Introduction 159

    9.2 A parametric model for outcome utilities 160

    9.3 Incorporating risk attitudes into clinical policies 172

    9.4 Helping patients communicate their preferences 181

    Epilogue 185

    A.9.1 Exponential utility model parameter nomogram 186

    Bibliography 188

    10 Outcome utilities – adjusting for the quality of life 189

    10.1 Introduction 189

    10.2 Example – why the quality of life matters 190

    10.3 Quality- lifetime tradeoff models 193

    10.4 Quality- survival tradeoff models 203

    10.5 What does it all mean? – an extended example 209

    Epilogue 217

    Bibliography 217

    11 Survival models: representing uncertainty about the length of life 218

    11.1 Introduction 218

    11.2 Survival model basics 219

    11.3 Medical example – survival after breast cancer recurrence 226

    11.4 Exponential survival model 228

    11.5 Actuarial survival models 232

    11.6 Two- part survival models 235

    Epilogue 247

    Bibliography 247

    12 Markov models 248

    12.1 Introduction 248

    12.2 Markov model basics 249

    12.3 Determining transition probabilities 259

    12.4 Markov model analysis – an overview 269

    Epilogue 277

    Bibliography 277

    13 Selection and interpretation of diagnostic tests 278

    13.1 Introduction 278

    13.2 Four principles of decision making 279

    13.3 The threshold probability for treatment 281

    13.4 Threshold probabilities for testing 288

    13.5 Clinical application of the threshold model of decision making 293

    13.6 Accounting for the non- diagnostic effects of undergoing a test 296

    13.7 Sensitivity analysis 298

    13.8 Decision curve analysis 300

    Bibliography 302

    14 Medical decision analysis in practice: advanced methods 303

    14.1 An overview of advanced modeling techniques 303

    14.2 Use of medical decision- making concepts to analyze a policy problem: the cost- effectiveness of screening for HIV 305

    14.3 Use of medical decision- making concepts to analyze a clinical diagnostic problem: strategies to diagnose tumors in the lung 313

    14.4 Calibration and validation of decision models 317

    14.5 Use of complex models for individual- patient decision making 319

    Bibliography 321

    15 Cost- effectiveness analysis 323

    15.1 The clinician’s conflicting roles: patient advocate member of society and entrepreneur 323

    15.2 Cost- effectiveness analysis: a method for comparing management strategies 325

    15.3 Cost–benefit analysis: a method for measuring the net benefit of medical services 330

    15.4 Methodological best practices for cost- effectiveness analysis 332

    15.5 Reference case for cost- effectiveness analysis 333

    15.6 Impact inventory for cataloguing consequences 334

    15.7 Measuring the health effects of medical care 334

    15.8 Measuring the costs of medical care 335

    15.9 Interpretation of cost- effectiveness analysis and use in decision making 337

    15.10 Limitations of cost- effectiveness analyses 337

    Bibliography 338

    Index 340

Komentarze (0)