• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Fundamentals of Ionizing Radiation Dosimetry

Fundamentals of Ionizing Radiation Dosimetry

9783527409211
850,50 zł
765,45 zł Zniżka 85,05 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 765,45 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis

A new, comprehensively updated edition of the acclaimed textbook by F.H. Attix (Introduction to Radiological Physics and Radiation Dosimetry) taking into account the substantial developments in dosimetry since its first edition. This monograph covers charged and uncharged particle interactions at a level consistent with the advanced use of the Monte Carlo method in dosimetry; radiation quantities, macroscopic behaviour and the characterization of radiation fields and beams are covered in detail. A number of chapters include addenda presenting derivations and discussions that offer new insight into established dosimetric principles and concepts. The theoretical aspects of dosimetry are given in the comprehensive chapter on cavity theory, followed by the description of primary measurement standards, ionization chambers, chemical dosimeters and solid state detectors. Chapters on applications include reference dosimetry for standard and small fields in radiotherapy, diagnostic radiology and interventional procedures, dosimetry of unsealed and sealed radionuclide sources, and neutron beam dosimetry. The topics are presented in a logical, easy-to-follow sequence and the text is supplemented by numerous illustrative diagrams, tables and appendices.

For senior undergraduate- or graduate-level students and professionals.

Szczegóły produktu
80681
9783527409211
9783527409211

Opis

Rok wydania
2017
Numer wydania
1
Oprawa
twarda
Liczba stron
1000
Wymiary (mm)
179.00 x 247.00
Waga (g)
1990
  • Preface xix

    Quantities and symbols xxiii

    Acronyms xxxix

    1 Background and Essentials 1

    1.1 Introduction 1

    1.2 Types and Sources of Ionizing Radiation 1

    1.3 Consequences of the Random Nature of Radiation 4

    1.4 Interaction Cross Sections 6

    1.5 Kinematic Relativistic Expressions 9

    1.6 Atomic Relaxations 11

    1.7 Evaluation of Uncertainties 22

    Exercises 28

    2 Charged-Particle Interactions with Matter 29

    2.1 Introduction 29

    2.2 Types of Charged-Particle Interactions 31

    2.3 Elastic Scattering 36

    2.4 Inelastic Scattering and Energy Loss 55

    2.5 Radiative Energy Loss: Bremsstrahlung 95

    2.6 Total Stopping Power 103

    2.7 Range of Charged Particles 104

    2.8 Number and Energy Distributions of Secondary Particles 106

    2.9 Nuclear Stopping Power and Interactions by Heavy Charged Particles 112

    2.10 The W-Value (Mean Energy to Create an Ion Pair) 114

    2.11 Addendum –Derivation of Expressions for the Elastic and Inelastic Scattering of Heavy Charged Particles 119

    Exercises 139

    3 Uncharged-Particle Interactions with Matter 143

    3.1 Introduction 143

    3.2 Photon Interactions with Matter 143

    3.3 Photoelectric Effect 145

    3.4 Thomson Scattering 154

    3.5 Rayleigh Scattering (Coherent Scattering) 157

    3.6 Compton Scattering (Incoherent Scattering) 161

    3.7 Pair Production and Triplet Production 178

    3.8 Positron Annihilation 188

    3.9 Photonuclear Interactions 191

    3.10 Photon Interaction Coefficients 193

    3.11 Neutron Interactions 204

    Exercises 211

    4 Field and Dosimetric Quantities, Radiation Equilibrium – Definitions and Inter-Relations 215

    4.1 Introduction 215

    4.2 Stochastic and Non-stochastic Quantities 215

    4.3 Radiation Field Quantities and Units 216

    4.4 Distributions of Field Quantities 219

    4.5 Quantities Describing Radiation Interactions 220

    4.6 Dosimetric Quantities 229

    4.7 Relationships Between Field and Dosimetric Quantities 233

    4.8 Radiation Equilibrium (RE) 239

    4.9 Charged-Particle Equilibrium (CPE) 242

    4.10 Partial Charged-Particle Equilibrium (PCPE) 248

    4.11 Summary of the Inter-Relations between Fluence, Kerma, Cema, and Dose 252

    4.12 Addendum – Example Calculations of (Net) Energy Transferred and Imparted 252

    Exercises 256

    5 Elementary Aspects of the Attenuation of Uncharged Particles 259

    5.1 Introduction 259

    5.2 Exponential Attenuation 259

    5.3 Narrow-Beam Attenuation 261

    5.4 Broad-Beam Attenuation 263

    5.5 Spectral Effects 270

    5.6 The Build-up Factor 271

    5.7 Divergent Beams –The Inverse Square Law 273

    5.8 The Scaling Theorem 276

    Exercises 277

    6 Macroscopic Aspects of the Transport of Radiation Through Matter 279

    6.1 Introduction 279

    6.2 The Radiation Transport Equation Formalism 280

    6.3 Introduction to Monte Carlo Derived Distributions 286

    6.4 Electron Beam Distributions 287

    6.5 Protons and Heavier Charged Particle Beam Distributions 296

    6.6 Photon Beam Distributions 301

    6.7 Neutron Beam Distributions 309

    6.7.1 Fluence Distributions 309

    6.7.2 Dose Distributions 311

    Exercises 313

    7 Characterization of Radiation Quality 315

    7.1 Introduction 315

    7.2 General Aspects of Radiation Spectra. Mean Energy 316

    7.3 Beam Quality Specification for Kilovoltage x-ray Beams 318

    7.4 Megavoltage Photon Beam Quality Specification 326

    7.5 High-Energy Electron Beam Quality Specification 331

    7.6 Beam Quality Specification of Protons and Heavier Charged Particles 335

    7.7 Energy Spectra Determination 339

    Exercises 346

    8 The Monte Carlo Simulation of the Transport of Radiation Through Matter 349

    8.1 Introduction 349

    8.2 Basics of the Monte Carlo Method (MCM) 350

    8.3 Simulation of Radiation Transport 359

    8.4 Monte Carlo Codes and Systems in the Public Domain 379

    8.5 Monte Carlo Applications in Radiation Dosimetry 386

    8.6 Other Monte Carlo Developments 393

    Exercises 394

    9 Cavity Theory 397

    9.1 Introduction 397

    9.2 Cavities That Are Small Compared to Secondary Electron Ranges 399

    9.3 Stopping-Power Ratios 413

    9.4 Cavities That Are Large Compared to Electron Ranges 423

    9.5 General or Burlin Cavity Theory 425

    9.6 The Fano Theorem 429

    9.7 Practical Detectors: Deviations from ‘Ideal’ Cavity Theory Conditions 431

    9.8 Summary and Validation of Cavity Theory 435

    Exercises 440

    10 Overview of Radiation Detectors and Measurements 443

    10.1 Introduction 443

    10.2 Detector Response and Calibration Coefficient 444

    10.3 Absolute, Reference, and Relative Dosimetry 445

    10.4 General Characteristics and Desirable Properties of Detectors 447

    10.5 Brief Description of Various Types of Detectors 460

    10.6 Addendum –The Role of the Density Effect and I-Values in the Medium-to-Water Stopping-Power Ratio 467

    Exercises 471

    11 Primary Radiation Standards 473

    11.1 Introduction 473

    11.2 Free-Air Ionization Chambers 474

    11.3 Primary Cavity Ionization Chambers 481

    11.4 Absorbed-Dose Calorimeters 484

    11.5 Fricke Chemical Dosimeter 488

    11.6 International Framework for Traceability in Radiation Dosimetry 490

    11.7 Addendum – Experimental Derivation of Fundamental Dosimetric Quantities 491

    Exercises 493

    12 Ionization Chambers 497

    12.1 Introduction 497

    12.2 Types of Ionization Chamber 498

    12.3 Measurement of Ionization Current 504

    12.4 Ion Recombination 513

    12.5 Addendum –Air Humidity in Dosimetry 524

    Exercises 531

    13 Chemical Dosimeters 533

    13.1 Introduction 533

    13.2 Radiation Chemistry in Water 533

    13.3 Chemical Heat Defect 538

    13.4 Ferrous Sulfate Dosimeters 539

    13.5 Alanine Dosimetry 547

    13.6 Film Dosimetry 556

    13.7 Gel Dosimetry 568

    Exercises 574

    14 Solid-State Detector Dosimetry 577

    14.1 Introduction 577

    14.2 Thermoluminescence Dosimetry 577

    14.3 Optically-Stimulated Luminescence Dosimeters 591

    14.4 Scintillation Dosimetry 596

    14.5 Semiconductor Detectors for Dosimetry 609

    Exercises 628

    15 Reference Dosimetry for External Beam Radiation Therapy 631

    15.1 Introduction 631

    15.2 A Generalized Formalism 632

    15.3 Practical Implementation of Formalisms 636

    15.4 Quantities Entering into the Various Formalisms 651

    15.5 Accuracy of Radiation Therapy Reference Dosimetry 669

    15.6 Addendum – Perturbation Correction Factors 671

    Exercises 689

    16 Dosimetry of Small and Composite Radiotherapy Photon Beams 693

    16.1 Introduction 693

    16.2 Overview 694

    16.3 The Physics of Small Megavoltage Photon Beams 696

    16.4 Dosimetry of Small Beams 701

    16.5 Detectors for Small-Beam Dosimetry 714

    16.6 Dosimetry of Composite Fields 717

    16.7 Addendum—Measurement in Plastic Phantoms 723

    Exercises 726

    17 Reference Dosimetry for Diagnostic and Interventional Radiology 729

    17.1 Introduction 729

    17.2 Specific Quantities and Units 730

    17.3 Formalism for Reference Dosimetry 736

    17.4 Quantities Entering into the Formalism 740

    Exercises 751

    18 Absorbed Dose Determination for Radionuclides 753

    18.1 Introduction 753

    18.2 Radioactivity Quantities and Units 755

    18.3 Dosimetry of Unsealed Radioactive Sources 763

    18.4 Dosimetry of Sealed Radioactive Sources 788

    18.5 Addendum –The Reciprocity Theorem for Unsealed Radionuclide Dosimetry 804

    Exercises 809

    19 Neutron Dosimetry 813

    19.1 Introduction 813

    19.2 Neutron Interactions in Tissue and Tissue-Equivalent Materials 814

    19.3 Neutron Sources 818

    19.4 Principles of Mixed-Field Dosimetry 821

    19.5 Neutron Detectors 825

    19.6 Reference Dosimetry of Neutron Radiotherapy Beams 833

    Exercises 838

    A Data Tables 841

    A.1 Fundamental and Derived Physical Constants 841

    A.2 Data of Elements 843

    A.3 Data for Compounds and Mixtures 846

    A.4 Atomic Binding Energies for Elements 846

    A.5 Atomic Fluorescent X-ray Mean Energies and Yields for Elements 857

    A.6 Interaction Data for Electrons and Positrons (Electronic Form) 863

    A.7 Interaction Data for Protons and Heavier Charged Particles (Electronic Form) 868

    A.8 Interaction Data for Photons (Electronic Form) 874

    A.9 Neutron Kerma Coefficients (Electronic Form) 879

    References 881

    Index 945

Komentarze (0)