• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Statistical Hypothesis Testing in Context: Reproducibility, Inference, and Science

Statistical Hypothesis Testing in Context: Reproducibility, Inference, and Science

9781108423564
314,94 zł
283,44 zł Zniżka 31,50 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 283,44 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
Fay and Brittain present statistical hypothesis testing and compatible confidence intervals, focusing on application and proper interpretation. The emphasis is on equipping applied statisticians with enough tools - and advice on choosing among them - to find reasonable methods for almost any problem and enough theory to tackle new problems by modifying existing methods. After covering the basic mathematical theory and scientific principles, tests and confidence intervals are developed for specific types of data. Essential methods for applications are covered, such as general procedures for creating tests (e.g., likelihood ratio, bootstrap, permutation, testing from models), adjustments for multiple testing, clustering, stratification, causality, censoring, missing data, group sequential tests, and non-inferiority tests. New methods developed by the authors are included throughout, such as melded confidence intervals for comparing two samples and confidence intervals associated with Wilcoxon-Mann-Whitney tests and Kaplan-Meier estimates. Examples, exercises, and the R package asht support practical use.
Szczegóły produktu
93010
9781108423564
9781108423564

Opis

Rok wydania
2022
Numer wydania
1
Oprawa
twarda
Liczba stron
450
  • 1. Introduction; 2. Theory of tests, p-values, and confidence intervals; 3. From scientific theory to statistical hypothesis test; 4. One sample studies with binary responses; 5. One sample studies with ordinal or numeric responses; 6. Paired data; 7. Two sample studies with binary responses; 8. Assumptions and hypothesis tests; 9. Two sample studies with ordinal or numeric responses; 10. General methods for creating decision rules; 11. K-Sample studies and trend tests; 12. Clustering and stratification; 13. Multiplicity in testing; 14. Testing from models; 15. Causality; 16. Censoring; 17. Missing data; 18. Group sequential and related adaptive methods; 19. Testing fit, equivalence, and non-inferiority; 20. Power and sample size.
Komentarze (0)