• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Analysis of Multivariate and High-Dimensional Data

Analysis of Multivariate and High-Dimensional Data

9780521887939
403,14 zł
362,82 zł Zniżka 40,32 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 362,82 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
Big data poses challenges that require both classical multivariate methods and contemporary techniques from machine learning and engineering. This modern text equips you for the new world - integrating the old and the new, fusing theory and practice and bridging the gap to statistical learning. The theoretical framework includes formal statements that set out clearly the guaranteed safe operating zone for the methods and allow you to assess whether data is in the zone, or near enough. Extensive examples showcase the strengths and limitations of different methods with small classical data, data from medicine, biology, marketing and finance, high-dimensional data from bioinformatics, functional data from proteomics, and simulated data. High-dimension low-sample-size data gets special attention. Several data sets are revisited repeatedly to allow comparison of methods. Generous use of colour, algorithms, Matlab code, and problem sets complete the package. Suitable for masters/graduate students in statistics and researchers in data-rich disciplines.
Szczegóły produktu
79937
9780521887939
9780521887939

Opis

Rok wydania
2013
Numer wydania
1
Oprawa
twarda
Liczba stron
526
Wymiary (mm)
182.00 x 260.00
Waga (g)
1290
  • Part I. Classical Methods:: 1. Multidimensional data; 2. Principal component analysis; 3. Canonical correlation analysis; 4. Discriminant analysis; Part II. Factors and Groupings:: 5. Norms, proximities, features, and dualities; 6. Cluster analysis; 7. Factor analysis; 8. Multidimensional scaling; Part III. Non-Gaussian Analysis:: 9. Towards non-Gaussianity; 10. Independent component analysis; 11. Projection pursuit; 12. Kernel and more independent component methods; 13. Feature selection and principal component analysis revisited; Index.
Komentarze (0)