In this part, fractional calculus was applied to problems in nerve stimulation, dielectric relaxation, and viscoelastic materials by extending the governing differential equations to include fractional order terms. In this third and final installment, we consider distributed systems that represent shear stress in fluids, heat transfer in uniform one-dimensional media, andsubthreshold nerve depolarization. Classic electrochemical analysis and impedance spectroscopy are also reviewed from the perspective of fractional calculus, and selected examples from recent studies in neuroscience, bioelectricity, and tissue biomechanics are analyzed to illustrate the vitality of the field.