• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide

Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide

9781107699922
346,44 zł
311,79 zł Zniżka 34,65 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 311,79 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
This book discusses the most important techniques available for longitudinal data analysis, from simple techniques such as the paired t-test and summary statistics, to more sophisticated ones such as generalized estimating of equations and mixed model analysis. A distinction is made between longitudinal analysis with continuous, dichotomous and categorical outcome variables. The emphasis of the discussion lies in the interpretation and comparison of the results of the different techniques. The second edition includes new chapters on the role of the time variable and presents new features of longitudinal data analysis. Explanations have been clarified where necessary and several chapters have been completely rewritten. The analysis of data from experimental studies and the problem of missing data in longitudinal studies are discussed. Finally, an extensive overview and comparison of different software packages is provided. This practical guide is essential for non-statisticians and researchers working with longitudinal data from epidemiological and clinical studies.
Szczegóły produktu
66866
9781107699922
9781107699922

Opis

Rok wydania
2013
Numer wydania
2
Oprawa
miękka foliowana
Liczba stron
336
Wymiary (mm)
173.00 x 244.00
Waga (g)
660
  • Preface; Acknowledgements; 1. Introduction; 2. Study design; 3. Continuous outcome variables; 4. Continuous outcome variables - relationships with other variables; 5. The modelling of time; 6. Other possibilities for modelling longitudinal data; 7. Dichotomous outcome variables; 8. Categorical and count outcome variables; 9. Analysis data from experimental studies; 10. Missing data in longitudinal studies; 11. Sample size calculations; 12. Software for longitudinal data analysis; 13. One step further; References; Index.
Komentarze (0)