• Zamawiaj do paczkomatu
  • Płać wygodnie
  • Obniżka
Modern Statistics for Modern Biology

Modern Statistics for Modern Biology

9781108705295
314,94 zł
283,44 zł Zniżka 31,50 zł Brutto
Najniższa cena w okresie 30 dni przed promocją: 283,44 zł
Ilość
Od 4 do 6 tygodni

  Dostawa

Wybierz Paczkomat Inpost, Orlen Paczkę, DPD, Pocztę, email (dla ebooków). Kliknij po więcej

  Płatność

Zapłać szybkim przelewem, kartą płatniczą lub za pobraniem. Kliknij po więcej szczegółów

  Zwroty

Jeżeli jesteś konsumentem możesz zwrócić towar w ciągu 14 dni*. Kliknij po więcej szczegółów

Opis
If you are a biologist and want to get the best out of the powerful methods of modern computational statistics, this is your book. You can visualize and analyze your own data, apply unsupervised and supervised learning, integrate datasets, apply hypothesis testing, and make publication-quality figures using the power of R/Bioconductor and ggplot2. This book will teach you cooking from scratch, from raw data to beautiful illuminating output, as you learn to write your own scripts in the R language and to use advanced statistics packages from CRAN and Bioconductor. It covers a broad range of basic and advanced topics important in the analysis of high-throughput biological data, including principal component analysis and multidimensional scaling, clustering, multiple testing, unsupervised and supervised learning, resampling, the pitfalls of experimental design, and power simulations using Monte Carlo, and it even reaches networks, trees, spatial statistics, image data, and microbial ecology. Using a minimum of mathematical notation, it builds understanding from well-chosen examples, simulation, visualization, and above all hands-on interaction with data and code.
Szczegóły produktu
65018
9781108705295
9781108705295

Opis

Rok wydania
2019
Numer wydania
1
Oprawa
miękka foliowana
Liczba stron
402
Wymiary (mm)
217.00 x 279.00
Waga (g)
1140
  • Introduction; 1. Generative models for discrete data; 2. Statistical modeling; 3. High-quality graphics in R; 4. Mixture models; 5. Clustering; 6. Testing; 7. Multivariate analysis; 8. High-throughput count data; 9. Multivariate methods for heterogeneous data; 10. Networks and trees; 11. Image data; 12. Supervised learning; 13. Design of high-throughput experiments and their analyses; Statistical concordance; Bibliography; Index.
Komentarze (0)